

CG39FDI-2 CONTENTS

May 1997 i

TABLE OF CONTENTS

SECTION AND TITLE PAGE

1.0 INTRODUCTION . 1-1
1.1 PRODUCT DESCRIPTION . 1-2
1.2 SOFTWARE REGISTRATION AND SUPPORT . 1-2

1.2.1 Software Registration . 1-3
1.2.2 Product Support . 1-3

1.3 RELATED LITERATURE . 1-5

2.0 SOFTWARE INSTALLATION . 2-1
2.1 DISK IDENTIFICATION AND BACKUP . 2-1
2.2 INSTALLATION PROCEDURE . 2-1

3.0 CONFIGURATION . 3-1
3.1 PROCEDURE . 3-1
3.2 ACCESSING THE FUNCTION BLOCK LIBRARY . 3-1
3.3 GENERAL CONCEPTS . 3-1
3.4 CONFIGURATION GUIDELINES . 3-2

4.0 FUNCTION BLOCKS . 4-1
4.1 MODBUS MASTER FUNCTION BLOCK (MODBUS_M) . 4-2

4.1.1 Inputs . 4-2
4.1.2 Outputs . 4-10
4.1.3 Soft List Parameters . 4-11

4.2 SERIAL FUNCTION BLOCK (SERIAL) . 4-14
4.2.1 Input . 4-14
4.2.1 Outputs . 4-14
4.2.3 Soft List Parameters . 4-15

A.0 APPENDIX A SS APPLICATION EXAMPLE 1 . A-1

B.0 APPENDIX B SS APPLICATION EXAMPLE 2 . B-1

C.0 APPENDIX C SS ERROR CODES . C-1

D.0 APPENDIX D SS SPECIFICATIONS . D-1

E.0 APPENDIX E SS CABLE CONNECTIONS . E-1

F.0 APPENDIX F SS ENTRELEC RS-232/RS-485 CONVERTER CONNECTIONS F-1

G.0 APPENDIX G SS REDUNDANT SYSTEM WIRING CONFIGURATION G-1

CONTENTS CG39FDI-2

May 1997ii

LIST OF FIGURES

FIGURE AND TITLE PAGE

A-1 SERIAL Block Configuration Showing On-line Data for Example 1 . A-2
A-2 SERIAL Block Soft List for Example 1 . A-2
A-3 MODBUS_M Configuration Showing On-Line Data for Example 1 . A-3
A-4 MODBUS_M Soft List for Example 1 . A-3

B-1 MODBUS_M Configuration Showing On-line Data for Example 2 . B-2

E-1 Minimum Serial Cable Requirements . E-1

F-1 Entrelec RS-232/RS-485 Converter Cable Connections . F-1

G-1 Redundant System Wiring Configuration . G-1

LIST OF TABLES

TABLE AND TITLE PAGE

C-1 Error Codes . C-1

D-1 Library Specifications . D-1

E-1 Control Module Serial Port Pin-Out . E-1

SIGNIFICANT CHANGES FOR REV. 2

Significant changes for rev. 2 are indicated by change bars located in the page margins. Major changes are
listed here.

1.0 INTRODUCTION - This section has been updated to accommodate the QUADLOG version of
the library. Section descriptions were updated to include the new appendices as outlined on the
next page.

1.2.2 PRODUCT SUPPORT - This section has been enhanced with the addition of a telephone listing
of international subsidiaries.

2.0 SOFTWARE INSTALLATION - This section has been rewritten to accommodate the different
versions of MS-Windows (i.e. Windows 3.x, Windows 95, and Windows NT).

CG39FDI-2 CONTENTS

May 1997 iii

SIGNIFICANT CHANGES FOR REV. 2
(Continued)

4.0 FUNCTION BLOCKS - This section has updated graphics for the Modbus Master
(MODBUS_M) and Serial (SERIAL) function blocks. Also, three new soft list parameters
(ModiconLoopback, PrioritizeWrites, and ExtendedAddress) have been added to the
MODBUS_M block.

A.0 APPENDIX A, APPLICATION EXAMPLE 1 - This section has been revised with updates to
graphics which show examples of on-line information.

B.0 APPENDIX B, APPLICATION EXAMPLE 2 - This section has been revised with updates to graphics
which show examples of on-line information.

C.0 APPENDIX C, ERROR CODES - This section has been expanded. It now lists the error code messages
that appear at the error code (E_CODE) output of the MODBUS_M function block, a description of each
code, and recommended user actions.

D.0 APPENDIX D, SPECIFICATIONS - This section has been updated. It lists the general
specifications of the Modbus Master Function Block Library.

F.0 APPENDIX F, ENTRELEC RS232/485 CONVERTER CONNECTIONS - This is a new section
that shows the connections needed for wiring an RS-485 foreign device to an ACM/CCM’s RS-232
serial port using an Entrelec RS-232 to RS-485 converter.

G.0 APPENDIX G, REDUNDANT SYSTEM WIRING CONFIGURATION - This is a new section
that shows the general wiring needed for a dual Modbus network in a redundant system.

Moore Products Co. assumes no liability for errors or omissions in this document or for the application and use of information included in this
document. The information herein is subject to change without notice.

The Moore logo, APACS, the APACS logo, QUADLOG, the QUADLOG logo, and 4-mation are trademarks of Moore Products Co.
All other trademarks are the property of the respective owners.

© Copyright 1997 Moore Products Co. All rights reserved.

CONTENTS CG39FDI-2

May 1997iv

CG39FDI-2 INTRODUCTION

May 1997 1-1

1.0 INTRODUCTION

The Modbus Master Function Block Library is add-on software for use with the 4-mation™ configuration *
software, version 3.00 or higher. The library software is available in both APACS and QUADLOG *® ®

versions. The APACS version (P/N 15939-623V4.xx) is for use with the Advanced Control Module (ACM) *
software, version 4.01 or higher. The QUADLOG version (P/N 15939-681V3.2x) is for use with either the *
Advanced Control Module Plus (ACM+) software or the Critical Control Module (CCM) software. Each *
must be version 3.20 or higher. *

The library software provides 4-mation with a set of function blocks for configuring a control module
(ACM/CCM) to operate as a Modbus master.

This document describes how to identify, register, backup, and install the Modbus Master Function Block
Library. It also provides reference information for each function block. This information is intended to be
used in conjunction with Using the 4-mation Configuration Software, as well as the other documents listed
in section 1.3, Related Literature. After the Modbus Master Function Block Library software has been
installed, most of the information presented in this document is also available through 4-mation’s on-line
help system.

This Guide is organized into the following sections:

C Section 1, Introduction—Summarizes the information presented in this Guide, describes the software
package, provides the software registration procedure, and lists reference literature to consult for
additional information.

C Section 2, Software Installation—Describes the general disk handling and backup requirements and the
software installation procedure.

C Section 3, Configuration—Gives a general configuration objective, refers to the needed configuration
software and associated literature, indicates how the Function Block Library is accessed, and provides
guidelines to carry out the MODBUS_M function block configuration.

C Section 4, Function Blocks—Describes the inputs, outputs, and soft list parameters of the MODBUS_M
and SERIAL function blocks.

C Appendix A, Application Example 1—Describes a control module configured as a Modbus master that
reads thirty floating-point (REAL) values from a slave device.

C Appendix B, Application Example 2—Describes a control module configured as a Modbus master that
reads 100 unsigned integer values from a slave address and converts these to REAL values for use in the
control module.

C Appendix C, Error Codes—Lists the error code messages that appear at the error code (E_CODE) output
of the MODBUS_M function block whenever an error condition is encountered.

INTRODUCTION CG39FDI-2

May 19971-2

C Appendix D, Specifications—Lists general specifications for the Modbus Master Function Block (FB)
Library.

C Appendix E, Cable Connections—Shows the pin-out of the ACM/CCM serial ports and the minimum
cable requirements for connecting to the serial port of a foreign device.

C Appendix F, Converter Connections—Shows the connections needed for wiring an RS-485 foreign*
device to the ACM/CCM’s RS-232 serial port using an Entrelec RS-232 to RS-485 converter.*

*
C Appendix G, Redundant System Wiring Configuration—Shows the general wiring needed for a dual*

Modbus network in a redundant system.*

1.1 PRODUCT DESCRIPTION

The Modbus Function Block (FB) Libraries permit the control module and the APACS/QUADLOG system
to exchange data with foreign devices that use the Modbus RTU protocol. The Modbus RTU protocol is
used by AEG Schneider Automation (formerly Modicon/Gould) RTU programmable logic controllers (PLCs)
and by many types of specialty instruments and interfaces such as analyzers, chromatographs, weigh scales,
human-machine interfaces (HMIs), remote termination units, and other distributed control systems (DCSs).
Modbus is a master/slave protocol in which a single master can address multiple slaves. The slave devices do
not initiate any communication; they wait for a command from the master, which requests the slave to read or
write data values. The control module can be configured to be either the master or the slave, but not both
from the same port.

The Modbus Master FB Library contains the Modbus Master (MODBUS_M) function block, which allows
the control module to act as a Modbus master. The Modbus Slave FB Library contains the Modbus Slave
(MODBUS_S) function block, which allows the control module to act as a Modbus slave. To use a control
module as a Modbus slave, refer to the Modbus Slave Function Block Library (document number CG39FDI-
3). Both libraries also contain a Serial (SERIAL) function block, which is used to initialize the Modbus
communications port.

The function blocks included in Modbus Master FB Library are configured on a configuration sheet using the
4-mation™ configuration software. The configuration of the MODBUS_M function block establishes,
inside the control module, a data array to hold the foreign device data. The control module configuration,
another control module, or an operator interface can then access and use the foreign device data by
referencing the array element. Configuration of the SERIAL function block enables the control module’s
serial port to communicate with the Modbus network and its foreign devices.

1.2 SOFTWARE REGISTRATION AND SUPPORT

The following subsections present guidelines for registering your software package and for contacting Moore
Products Co. for product support.

CG39FDI-2 INTRODUCTION

May 1997 1-3

1.2.1 Software Registration

Before reading further, complete and mail the brief Software Registration Form included in the package.
Registration will:

C Enter your software’s part number/version number and serial number in the master database of active
software packages

C Initiate product support

C Identify you as the person to whom information about future software enhancements and updates should
be sent

Without proper registration, it may be impossible to provide product support and to inform you of
enhancements and updates.

Each software update or enhancement will include a Software Registration Form so that your package’s
current part number/version number and serial number can be recorded in the database. Additional
registration forms are provided for subsequent users who become responsible for the software.

1.2.2 Product Support

Product support can be obtained from the Moore Products Co. Technical Information Center (TIC). TIC is a
customer service center that provides direct telephone support on technical issues related to the functionality,
application, and integration of all products supplied by Moore Products Co.

To contact TIC for support, either call 215-646-7400, extension 4TIC (4842) or leave a message in the
bulletin board service (BBS) by calling 215-283-4968. The following information should be at hand when
contacting TIC for support:

C Caller ID number, or name and company name

(When someone calls for support for the first time, a personal caller number is assigned. This number is
mailed in the form of a caller card. Having the number available when calling for support will allow the
TIC representative taking the call to use the central customer database to quickly identify the caller’s
location and past support needs.)

C Product part number, software version, and serial number, all of which are identified on the software’s
disk label

C Computer brand name, model number, and hardware configuration (types of disk drives, memory size,
video adapter, etc.)

C Version number of operating system (e.g. MS-DOS 6.22, Windows 3.x, Windows 95, Windows NT)

INTRODUCTION CG39FDI-2

May 19971-4

C If there is a problem with software operation:
- The steps performed before the problem occurred
- Any error messages displayed
- A copy of the computer’s CONFIG.SYS file
- A copy of the computer’s AUTOEXEC.BAT file

It would also be helpful to have the following information:
- 4-mation version number
- Control module ROM version
- Documentation about your system’s architecture

 - Information about the foreign device (e.g. company name, model number, software version,
 Modbus protocol implementation, etc.) to which the ACM\CCM and the Modbus software are trying

 to communicate.

For product support outside of North America, an alternative support system is available by contacting the
appropriate Moore Products Co. subsidiary:

Australia* Mexico
Moore Products Co. (Australia) Pty.Ltd.* Moore Products de Mexico S.A. de C.V.
Tel: (61) (2) 9319 4877* Tel: 6-11-98-58; 6-15-19-48;

* 6-15-02-62; or 6-15-02-38
Canada*
Moore Products Co. (Canada) Inc.*
Tel: (905) 457 9638* Moore Products Co. B.V.

* Tel: (00) (31) 180 461111
France*
Moore Products Co. (France)*
Tel: (33) 475 05 44 62* Moore Products Co. (S) Pte.Ltd.

* Tel: (65) 299 6051
India*
Moore Controls Pvt. Limited*
Tel: (91) (212) 770171* Moore Controls S.A. (Pty.)

* Tel: (27) 466 1673/9
Italy*
Moore Products Co. (Italia) S.r.l.*
Tel: (39) (2) 2940 1094* Moore Products Co. (U.K.) Ltd.

* Tel: (44) (1935) 706262
Japan*
Moore Products Co.(Japan) K.K.*
Tel: (81) (3) 5484 4390*

The Netherlands

Singapore

South Africa

United Kingdom

CG39FDI-2 INTRODUCTION

May 1997 1-5

1.3 RELATED LITERATURE

The following Moore Products Co. literature is available for reference:

C 4-mation, Installation and Operation (version 3.x binder number UM39-6, version 4.x binder number *
UM39-11) *

C Function Block Language (version 3.x binder number UM39-7, version 4.x binder number UM39-12) *
C APACS ACM Installation & Service Instruction (document number SD39ACM-2) *
C QUADLOG CCM Installation & Service Instruction (document number SDQLCCM-1) *

The following vendor literature should be available as needed:

• Microsoft MS-DOS Operating System Reference
• Microsoft Windows User’s Guide
C Foreign Device’s Modbus Protocol Communications Manual
C AEG Schneider Automation’s “Modicon Modbus Protocol Reference Guide PI-MBUS-300” *

#

INTRODUCTION CG39FDI-2

May 19971-6

CG39FDI-2 SOFTWARE INSTALLATION

May 1997 2-1

2.0 SOFTWARE INSTALLATION *

This section provides the procedures for making a backup copy of the Modbus Master FB Library software,
installing the software, and performing initial software set-up. The software must be installed from floppy
disks to a permanent storage medium, such as the computer’s hard disk.

2.1 DISK IDENTIFICATION AND BACKUP

The Modbus Master FB Library software is shipped on a high density (HD) 3½" floppy disk. The label on
the disk lists the product’s part number, release number, and date, as well as the individual disk number. It is
recommended that you make backup copies of the original disk. Make the copies using the disk copying
procedure appropriate for your computer’s operating system. Once copied, safeguard the original by storing it
separately from the copies. Be sure to correctly label and write-protect the copies.

2.2 INSTALLATION PROCEDURE

The following procedures are used to install the Modbus Master FB Library software from a floppy drive to a
permanent storage medium, such as a hard drive. The installation is performed from Windows Program
Manager or Explorer. This is accomplished with the installation program (SETUP.EXE) resident on the
library disk. Essentially, you are to load and run this program and respond to prompts. The prompts will be
in the form of pop-up dialog boxes which will query you to enter information regarding your computer
system. The method used to run the setup program varies depending on the specific version of Windows on
the host computer. Use the appropriate procedure as needed.

IMPORTANT

An ACM/CCM configuration created before the Modbus Master FB Library installation
can be exported/imported to include the new function blocks, or a new configuration can
be created and copy/paste used to place the Modbus Master and Serial function blocks
into it.

To install the library under Windows 3.x:

1. Insert the library disk into the floppy drive.

2. From Program Manager, select File, Run.

3. At the Run command line, enter drive:\SETUP.EXE to start and initialize the setup program.

Examples: A:\SETUP.EXE or B:\SETUP.EXE

4. When the setup program starts, you are presented with an installation screen. Pop-up dialog boxes
will prompt you to enter information about your computer. Respond as needed.

SOFTWARE INSTALLATION CG39FDI-2

May 19972-2

To install the library under Windows 95:

1. Click on the Start button, point to Settings, and then click Control Panel.

2. Double-click on the Add/Remove Programs icon. This opens the Add/Remove Program Properties

dialog box.

3. Click the Install button. This opens the Install Program From Floppy Disk or CD-ROM dialog box.

4. Insert the library disk into the floppy drive then click the Next button. This opens the Run

Installation Program dialog box.

5. Verify that the command line is displaying the path and name of the setup program, then click the

Finish button to commence installation.

Examples: A:\SETUP.EXE or B:\SETUP.EXE

6. When the setup program starts, you are presented with a series of dialog boxes that prompt you for
information about your computer. Respond as needed.

To install the library under Windows NT:

The procedure for installing this library under Windows NT (also called Windows NT Workstation) depends
on which version of this operating system you are using. For Windows NT up to and including version 3.5.1,
use the procedure for Windows 3.x above. For Windows NT version 4.0 and higher, use the procedure for
Windows 95 above.

#

CG39FDI-2 CONFIGURATION

May 1997 3-1

3.0 CONFIGURATION

The Modbus Master Function Block Library is used to configure a control module to act as a Modbus master.
In this role, the control module is able to read data values from one or more slave devices. The function block
can also send commands that originate elsewhere in the APACS or QUADLOG system to change data values
in a Modbus slave.

3.1 PROCEDURE

The configuration procedure for the Modbus Master Library requires the same skills and knowledge needed
for the configuration of other function blocks used by either an APACS or QUADLOG system. The
configuration is developed by using the 4-mation configuration software. Instructions for proper installation
and use of the 4-mation software are listed in section 1.3, Related Literature.

3.2 ACCESSING THE FUNCTION BLOCK LIBRARY

With the Modbus Master Library properly installed (see section 2.0, Installation), 4-mation automatically
includes the Modbus Master (MODBUS_M) and Serial (SERIAL) function blocks when it is started. These
function blocks can then be selected from 4-mation’s Standard function block list (they do not appear on the
icon bar). From within 4-mation, use the DERIVED key and then select the Standard option button to
display the list of function blocks including the MODBUS_M and SERIAL blocks.

IMPORTANT

An ACM/CCM configuration created before the Modbus Master FB Library
installation can be exported/imported to include the new function blocks, or a new
configuration can be created and copy/paste used to place the Modbus Master and
Serial function blocks into it.

3.3 GENERAL CONCEPTS

The MODBUS_M function block is needed to allow the control module to issue Modbus commands to a
Modbus slave device. The control module configuration (function block diagram, ladder logic, etc.) is needed
to configure the MODBUS_M block and its supporting data arrays.

Multiple MODBUS_M function blocks can reside in a control module configuration to execute multiple
commands and to communicate with multiple slaves. Each MODBUS_M block is configured to
communicate with a particular Modbus slave device by providing the slave’s address to the block’s (ADDR)
input. You are to enter the desired Modbus Function Code number at the master block’s command (CMD)
input. Commonly supported Modbus codes include functions to read/write coils and read/write registers.
The block also supports reading and writing of floating point and 32-bit integer data types. Command and
response data values are handled by arrays. Input and output scaling for data values is also provided.

The purpose of the SERIAL function block is to setup one of the control module’s serial ports for serial

CONFIGURATION CG39FDI-2

May 19973-2

communications with a foreign device. This function block handles the baud rate, parity, stop bits, etc. along
with flow control, timeout, and buffer size parameters. The SERIAL block provides an ID output to be
referenced by other serial communication function blocks that use the control module serial port. Multiple
serial communication function blocks, such as the MODBUS_M, can make use of a single SERIAL block.

3.4 CONFIGURATION GUIDELINES

A common application for the MODBUS_M function block is to read values from the slave device and
display and/or use these values in the APACS or QUADLOG system. Section 4.0, Function Blocks,
describes the inputs, outputs, and soft list parameters of the MODBUS_M and SERIAL function blocks used
in configuring the Modbus master. When a continuous update of slave values is needed, configure the CONT
input to be TRUE. This causes the Modbus command to be executed as often as the control module’s scan
rate permits. When multiple MODBUS_M function blocks are configured in a control module, the scanning
order controls the execution sequence.

The Modbus slave address, to which the control module is communicating, is entered using the ADD input.
The particular Modbus Function Code to be executed is configured in the command (CMD) input. A
reference address is associated with most Modbus Function Codes. The starting reference address used for a
command, is entered at the START input. The quantity of sequential addresses to be read or written is
entered using the number (NUM) input. When reading data from a slave, the actual data values received are
placed in the configured DATA array. When sending a command to change a register value or coil state, the
DATA array input contains the new value.

IMPORTANT

When structuring the database in your Modbus slave device, it is strongly suggested
that a sequential block of discretes, registers, etc. be allocated as the data to be read
by the control module Modbus master. A sequential block of data is read much
more efficiently by the master resulting in improved performance. If necessary, use
instructions in the slave device to move the data from scattered origins to a
sequential or tightly packed group of registers, discretes, etc. to be read by the
master.

Detailed descriptions of two sample applications are provided in the appendices of this Guide. Appendix A
contains Application Example 1, which describes a control module configured as a Modbus master that reads
thirty floating point (REAL) values from a slave device. Appendix B contains Application Example 2, which
describes a control module configured as a Modbus master that reads 100 unsigned integer values from a
slave address and converts them to REAL values. Additional supplemental information is provided in
appendices C through G as described in section 1.0, Introduction.

#

CG39FDI-2 FUNCTION BLOCKS

May 1997 4-1

4.0 FUNCTION BLOCKS *

The Modbus Master Function Block Library provides the 4-mation configuration software with a set of
function blocks for configuring a control module to operate as a Modbus master. This permits an APACS or
QUADLOG system to exchange data with foreign devices that use the Modbus RTU protocol. Modbus RTU
is a master/slave protocol in which a single master can address multiple slaves. A listing of the library blocks
is presented here. Reference information pertaining to individual blocks is provided in the sections to follow.

C Modbus Master block (MODBUS_M)
C Serial block (SERIAL)

BOOL
BOOL

BOOL

MODBUS_M

 NDR
ERROR

E_CODE

REQ

STATE
 INT

CONT
ID STRING

 INT ADDR
 INT CMD

 DINT START
 INT NUM
ARRAY DATA
ARRAY ENG_LO
ARRAY ENG_HI
ANY FD_LO
ANY FD_HI

BOOL

INT

FUNCTION BLOCKS CG39FDI-2

May 19974-2

4.1 MODBUS MASTER FUNCTION BLOCK (MODBUS_M)

The symbol for the Modbus Master (MODBUS_M) function block is shown above. This block allows the
control module to operate as a Modbus master. The following subsections describe the block’s inputs,
outputs, and soft list parameters.

4.1.1 Inputs

This subsection defines the inputs of the MODBUS_M block.

REQ Data Type: BOOL

When this REQuest input makes a FALSE to TRUE transition, the block executes a single time.
This input is used when a Modbus command is issued at discrete intervals (not continuously).

CONT Data Type: BOOL

When the CONTinuous input is TRUE, the function block executes as often as the control module’s
scan permits. The CONT input would typically be used when reading dynamic data values from the
slave device.

ID Data Type: INT

A valid ID input must be configured for each MODBUS_M function block to execute. The ID
originates from a SERIAL connect block, which can be used for multiple MODBUS_M blocks in a
control module.

CG39FDI-2 FUNCTION BLOCKS

May 1997 4-3

ADDR Data Type: INT

This is the Address input. It accepts the slave address of the Modbus device to which the block
communicates. According to the Modbus protocol, valid slave addresses are 1 to 247. Note that the
block does not check for an address that is outside of this range.

CMD DataType: INT

Enter a valid Modbus Function Code for the command to be executed by the function block.
Consult the slave device’s Modbus implementation regarding supported function codes, valid
reference types and ranges, maximum number of values read in a single command, etc. to ensure
compatibility. The Function Codes supported by this block are described below.

01 - Read Coil Status

DATA Array: BOOL, WORD, INT, UINT

Reads Modbus reference type Output Coil (addresses 00001 to 09999 decimal). Note that the
STARTing address for MODBUS_M function block does not have the leading zeroes (e.g. Coil
00001 would be entered as 1). Maximum coils read by a function block using Command 01 is 2000;
however, be aware that the slave may have a maximum read limit that is less than 2000.

02 - Read Input Status

DATA Array: BOOL, WORD, INT, UINT

Reads Modbus reference type Input Coil (addresses 10001 to 19999 decimal). The maximum coils
read by a function block using Command 02 is 2000; however, be aware that the slave may have a
maximum read limit that is less than 2000.

03 - Read Holding Registers

DATA Array: WORD, INT, UINT, REAL, DINT, UDINT, STRING, or
BOOL (lowest number coil is first BOOL element in array)

Reads Modbus reference type Holding Register (addresses 40001 to 49999 decimal). Maximum
registers read by a function block using Command 03 are:

126 DATA Array: WORD, INT, UINT, BOOL, REAL, DINT, or
UDINT (NumBytesPerReg=2)

63 DATA Array: REAL, DINT, UDINT (NumBytesPerReg=4)

FUNCTION BLOCKS CG39FDI-2

May 19974-4

04 - Read Input Registers

DATA Array: WORD, INT, UINT, REAL, DINT, UDINT, STRING, or
BOOL (lowest number coil is first BOOL element in array)

Reads Modbus reference type Input Register (addresses 30001 to 39999 decimal). Maximum
registers read by a function block using Command 04 are:

126 DATA Array: WORD, INT, UINT, BOOL, REAL, DINT, or
UDINT (NumBytesPerReg=2)

 63 DATA Array: REAL, DINT, UDINT (NumBytesPerReg=4)

05 - Force Single Coil

DATA Array: BOOL

Sends a command to change the state of a single 0xxxx coil.

06 - Preset Single Register

DATA Array: WORD, INT, UINT, REAL, DINT, UDINT, STRING, or
BOOL (lowest number coil is first BOOL element in array)

Sends a command to change the value of a single 4xxxx holding register.

08 - Loopback Test

DATA Array: WORD, INT, UINT

This is a Modbus command that provides a simple test of the communications system between the
control module master and a Modbus slave. The Loopback Test command must be supported by the
slave also. The block uses a Diagnostic Code of 00, which results in the query data being returned to
the MODBUS_M block. In other words, what is transmitted is “loopbacked” to the master by the
slave. The START address should be configured as an Input (3xxxx) or Holding Register (4xxxx),
and a valid length (1 to 126) for the NUM input should be entered.

NOTE

The value of the NUM input automatically overwrites the first element of the DATA
array for transmission to the slave. If the loopback test was successful, the DATA
array contains the command sent, with the exception of the first element. If the
loopback test failed, verify the command is supported by the slave device and the
function block is configured properly.

CG39FDI-2 FUNCTION BLOCKS

May 1997 4-5

15 - Force Multiple Coils

DATA Array: BOOL

Sends a command to change the state of multiple 0xxxx coils.

16 - Preset Multiple Registers

DATA Array: WORD, INT, UINT, REAL, DINT, UDINT, STRING, or
BOOL (lowest number coil is first BOOL element in array)

Sends a command to change the value of multiple 4xxxx holding registers. When changing the value
of a floating point or double integer address that uses two consecutive registers, this command must
be used (Function Code 06 will not work).

17 - Report Slave I.D.

DATA Array: WORD, INT, UINT

Allows the control module master to determine the type of slave with which it is communicating, if
the command is supported by the slave. The START address should be configured as an Input
(3xxxx) or Holding Register (4xxxx), although it is not explicitly used in the command, and a valid
length (> 1) for the NUM input should be entered. When a response is returned from the slave, the
Slave ID value is the first element in the DATA array, with the remaining response in subsequent
elements. When viewing the response using 4-mation’s Variable Control, select the option to
display the values in hex to aid in determining the response.

65 - Coil Status Read/Write

DATA Array: BOOL

This command is unique to Moore Products Co.’s MODBUS_M function block but is implemented
from two standard Modbus function codes, Code 01 - Coil Read and Code 05 - Force Single Coil.
By combining the two standard codes, it is much easier to configure the Modbus master to change
coil states in the slave device. Most of the time, this function code reads coil statuses (using code 01)
and returns the values to the DATA array. If a command is sent by logic in the control module
(SET_VAL block) or by a client (operator interface) on the APACS/QUADLOG side to the DATA
array element, the function block automatically sends code 05 to change the coil state, then resumes
the reading process.

FUNCTION BLOCKS CG39FDI-2

May 19974-6

66 - Holding Register Read/Write

DATA array: WORD, INT, UINT, REAL, DINT, UDINT, STRING

This command is unique to Moore Products Co.’s MODBUS_M function block but is implemented
from two standard Modbus function codes, Code 03 - Holding Register Read and Code 16 - Preset
Multiple Registers. By combining the two standard codes, it is much easier to configure the Modbus
master to change register values in the slave device. Most of the time, this function code reads
register values (using code 03) and returns the values to the DATA array. If a command is sent by
logic (SET_VAL block) in the control module or by a client (operator interface) on the
APACS/QUADLOG side to the DATA array element, the function block automatically sends code
16 to change the register value, then resumes the reading process.

START Data Type: DINT

This input defines the starting address for the configured command. When the ExtendedAddress soft
list parameter is FALSE, the valid Address Ranges are defined as follows:

00001-09999 Read/Write Coils
10001-19999 Read Input Status
30001-39999 Read Input Registers
40001-49999 Read/Write Holding Registers

When the ExtendedAddress soft list parameter is TRUE, the valid Address Ranges are defined
as follows:

000001-065535 Read/Write Coils
100001-165535 Read Input Status
300001-365535 Read Input Registers
400001-465535 Read/Write Holding Registers

NUM Data Type: INT

This input defines the quantity of coils or registers to be read or written by the configured command.
When reading floating point or double integer values from the slave device, give careful notice to this
entry and the NumBytesPerReg soft list entry. If the FP or DINT value is composed of two register
addresses (NumBytesPerReg=2), the NUMber of registers configured should be twice the number of
values desired (see Application Example 1 in Appendix A).

CG39FDI-2 FUNCTION BLOCKS

May 1997 4-7

DATA Data Type: Single dimension array of REAL, UDINT, DINT, STRING, UINT, WORD, or
BOOL, depending upon the Modbus Command number (see the Command
descriptions above).

When issuing a command that reads data from the slave device, this array contains the actual data
values received in the response from the slave. When the command performs a write to change a
value in the slave, this array contains the new values to be written to the slave.

When declaring and handling this array, it is important to be aware of the following important rules:

C It must be a single dimensional array (e.g. DATAONE[1..100]).

C Do not use the Modbus reference type (0,1,3,4) as part of the DATA array size declaration. For
example, if the MODBUS_M block is reading 50 unsigned integer registers from a slave
(START=40301, NUM=50), the DATA array could be declared as SLVDATA[301..400]; that
is, the 4 is omitted from the array size.

C Values communicated via Modbus are placed or extracted from the DATA array according to
how the array is declared, the value of the START input and/or the ArrayOffset soft list
parameter.

If the ArrayOffset parameter is FALSE, the first Modbus value corresponds to the first DATA
array element number. In the example above, the ArrayOffset should be set to FALSE so that
the value for register 40301 is placed in the first DATA array element, in this case
SLVDATA[301]. Since the SLVDATA array was declared with a range 301..400, element
[301] is still the first element even though its value is not 1.

Declaring the DATA array with element numbers that correspond to the Modbus reference may
provide a convenient way to identify an array element number with the Modbus reference,
depending upon the data type.

If the ArrayOffset parameter is TRUE, the value of the START input determines the
corresponding DATA array element number. Continuing with the example given above, if a
second MODBUS_M block was configured to read registers 351 to 400 (START=40351,
NUM=50), the same SLVDATA array could be used. However, ArrayOffset should be set to
TRUE so that register 40351 is placed in SLVDATA[351]. The value of the START input,
ignoring the Modbus reference type, is used to determine the offset.

C When 32-bit values are handled and the slave uses two registers for one value, the number of
Modbus registers required will be twice the number of actual 32-bit values. Therefore, a one-to-
one correspondence between register number and DATA array element number will not exist.

As an example using 32-bit values where NumBytesPerReg=2, if the START value is 48001
and the NUM input is 100, the DATA array could be created as DATAONE[8001..8050]
REALs. That is, it takes 100 registers to produce 50 floating point (REAL) values when
NumBytesPerReg=2. The composite value from registers 48001 and 48002 are placed in
DATAONE[8001], the value from registers 48003 and 48004 are placed in DATAONE[8002],

FUNCTION BLOCKS CG39FDI-2

May 19974-8

etc. The composite value for the last two registers, 48099 and 48100, are found in
DATAONE[8050].

As an alternative, the register number association to the DATA array element number can be
eliminated by declaring your DATA array to be [1..50] in the example above. In this manner, the
10th floating point value read would be placed in DATAONE[10].

C The DATA array dimensions must encompass the range of addresses configured by the START
and NUM inputs. For example, if the START input is 16000 (Input Coil 6000) and the NUM is
200, the DATA array could be declared as INPUTS[6000..6199]. Again, note that the reference
type designator (0,1,3, or 4) is not declared as part of the array element number.

C When reading and writing text strings, refer to the Special Application section under ENG_LO
for details on proper DATA array declaration.

ENG_LO Data Type: Single dimension array of REALs

Some applications may require that an unsigned integer value from a slave device be scaled to a
REAL value in the APACS or QUADLOG system. An element from the ENG_LO array, the
corresponding element from the ENG_HI array scale the register using linear equation y = mx + b,
where y is the scaled REAL value and x is the raw register value. The resulting scaled REAL value
is placed in the DATA array in the appropriate element location.

For example, if FD_LO=0, FD_HI=65535, ENG_LO=0.00, and ENG_HI=100.00, a register value
of 32768 is scaled to produce a REAL value of 50.00. This can be accomplished as follows:

DATA[a] = [(ENG_HI[a] - LO[a])/FD_HI-LO (register value - FD_LO) + ENG_LO[a]

Where: [a] is the array element number.

IMPORTANT

ENG_LO and ENG_HI array inputs and FD_LO and FD_HI values, should not be
configured when 32-bit values are sourced from the Modbus slave device. These
scaling factors are primarily intended for use when converting a 16-bit value
(unsigned integer) from a slave device into a REAL value in the APACS or
QUADLOG system.

CG39FDI-2 FUNCTION BLOCKS

May 1997 4-9

ENG_LO Special Application - Accessing Text Strings

Data Type: INT (with STRING DATA array)

When reading a text string from a Modbus slave, the DATA array must be declared with a STRING
data type and the ENG_LO with an INT data type. Each text string in your Modbus slave has a
certain character length. Each Modbus register typically holds two characters. Furthermore, the
Modbus slave may group several text strings into a sequential block of Modbus registers. The
MODBUS_M block can be configured to read one or several text strings in these applications.

Each text string corresponds to a STRING array element in your MODBUS_M DATA array. The
number of characters for each text string, and therefore each STRING array element, is specified by
the corresponding array element in the ENG_LO array. The ENG_LO array should be declared as
data type INT with the same number of elements as the DATA array. The value in the ENG_LO
array element specifies the number of characters for the corresponding STRING.

For example, assume your Modbus slave device has three text strings, as shown below, that is read
into the control module. The START input still specifies the starting Modbus register, in this case,
40325.

The DATA array is declared as SLV1TXT1[1..3], STRING data type. The ENG_LO array is
declared as LENGTH1[1..3], INT data type.

SLAVE TEXT DATA FB DATA READ RESULT
Starting Register 40325 START = 40325
Text String A: 8 characters (4 registers) LENGTH[1] = 8 SLV1TXT[1]
Text String B: 16 characters LENGTH[2] = 16 SLV1TXT[2]
Text String C: 4 characters LENGTH[3] = 4 SLV1TXT[3]

The MODBUS_M block, when triggered, sends the configured Modbus command (usually Function
Code 03), to read 14 registers starting at 40325. The NUM input does not need to be configured
because the MODBUS_M block calculates the correct number of registers for you (based on two
characters per register, the ENG_LO array values, and DATA array length).

ENG_HI Data Type: Single dimension array of REALs

See ENG_LO input for a description of its use.

FD_LO Data Type: REALs

See ENG_LO input for a description of its use.

FD_HI Data Type: REALs

FUNCTION BLOCKS CG39FDI-2

May 19974-10

See ENG_LO input for a description of its use.

4.1.2 Outputs

This subsection defines the outputs of the MODBUS_M block.

NDR Data Type: BOOL

When a command is received through the serial port for the configured function block, the boolean
output toggles from FALSE to TRUE and then back to FALSE the next scan. This NDR (New Data
Ready) output can be used to inform other logic that new data has been received or a command has
completed executing.

ERROR Data Type: BOOL

An error condition received by this block causes the output to go TRUE for one control module scan.
If desired, this output can be used to indicate to outside logic that an error has occurred and to assist
in troubleshooting communication problems.

E_CODE Data Type: INT

This output provides a string description of an error condition. A value of 0 indicates no errors.
Other error values are described in Appendix C, Error Codes.

STATE Data Type: INT

This output provides an integer value that indicates the current communication status of the function
block as follows:

1 = Idle
2 = Building a command
3 = Sending a command
4 = Waiting for a response

CG39FDI-2 FUNCTION BLOCKS

May 1997 4-11

4.1.3 Soft list Parameters

This subsection provides specifications and important supplementary information for the MODBUS_M
function block soft list parameters.

NumBytesPerReg Data Type: INT (valid values are 2 and 4)

This parameter configures the function block to handle each register as either a 2-byte entity or a 4-
byte entity (a byte is 8 bits). When the MODBUS_M block is reading a 32-bit value from the slave,
the DATA array should be configured as REAL, DINT or UDINT, as appropriate. Some slaves, like
Modicon PLCs, use two consecutive registers to represent a single 32-bit value, while others use 1
register. For proper reading (and writing) of data values, this parameter must be set correctly. In
addition, the byte ordering is very important in determining a 32-bit value. This characteristic is
handled by the ModiconByteOrder parameter discussed below.

2 Registers for one 32 bit value: NumBytesPerReg=2
1 Register for one 32 bit value: NumBytesPerReg=4

NOTE

The NumBytesPerReg parameter is ignored unless the DATA array is configured
as either REAL, DINT, or UDINT.

ModiconByteOrder Data Type: BOOL

When this parameter is TRUE, the MODBUS_M function block assumes that the byte ordering for
32-bit floating point values from the slave is similar to Modicon PLCs. That is, a Modicon 32-bit
value is sent as two registers (NumBytesPerReg=2) and the transmitted byte order is:

Register x = bytes 1 and 0, Register x+1 = bytes 3 and 2

For example, a floating point value in a Modicon PLC-compatible slave device is stored in Registers
40001 and 40002. The current value is 100.00. This value would be transmitted via Modbus
protocol as:

40001 40002
00 00 42 C8

Using standard IEEE single-precision floating point format, this would be interpreted as the value
100.00 REAL in an APACS or QUADLOG system.

When this parameter is FALSE, the MODBUS_M function block expects the byte order to be
“word-swapped” from the Modicon byte order. That is, the value above would be transmitted as:

40001 40002
42 C8 00 00

FUNCTION BLOCKS CG39FDI-2

May 19974-12

NOTE

The ModiconByteOrder parameter is ignored unless the DATA array is configured
as either REAL, DINT, or UDINT. The Byte Order also operates on values that use
four bytes per register.

ArrayOffset Data Type: BOOL

When this parameter is FALSE, the data values are placed in the first element location of the
declared DATA array, regardless of the START input value. When ArrayOffset is set to TRUE, an
offset is used when placing values in the DATA array. This offset process actually causes values to
be placed in the array according to the configured START input value. For example, if the START
value is 41626, ArrayOffset=TRUE, and the DATA array is declared as UINT data type
(DATA_ONE[501..750]), the values from a register read command are placed in the DATA_ONE
array, starting at element [626] not the first element [501].

This feature is useful in applications where several full-capacity MODBUS_M blocks are used to
bring data into the control module and build a single DATA array (for example, MODBUS_M_1
reads registers 41501 to 625 and places data in DATA_ONE[501] to [625]. MODBUS_M_2 reads
registers 41626 to 750 and places data in DATA_ONE [626] to [750]. The complete range of
values can then be accessed by an APACS or QUADLOG client by reading array DATA_ONE. The
ArrayOffset=TRUE must be set for MODBUS_M_2).

Default: FALSE

ModiconLoopback Data Type: BOOL

When this parameter is TRUE, the MODBUS_M function block uses the MODICON Loopback
Diagnostic code of 0, which echoes back to the master the same number of bytes received.

When this parameter is FALSE, the MODBUS_M function block uses the MPCO (Moore Products
Co.) Loopback Diagnostic code of 5, which uses a word count in the message to determine the
amount of data to echo. This format is well suited for radio modem testing, which often has
additional but unneeded data bytes on the end of each message.

Default: TRUE

PrioritizeWrites Data Type: BOOL

When this parameter is set to FALSE, Modbus writes have the same priority as reads. When set to
TRUE, any writes generated by this function block have priority over any other Modbus reads from
any other Modbus function block.

CG39FDI-2 FUNCTION BLOCKS

May 1997 4-13

Set this parameter to FALSE in applications where there may be a concern of continuous Modbus
writes locking out normal Modbus reads. However, in most applications, Modbus master writes to a
slave are usually infrequent and/or triggered by operator action.

Default: TRUE

ExtendedAddress Data Type: BOOL

When this parameter is FALSE, the valid address ranges are defined as follows:

00001-09999 Read/Write Coils
10001-19999 Read Input Status
30001-39999 Read Input Registers
40001-49999 Read/Write Holding Registers

When this parameter is TRUE, the valid address ranges to support extended addressing are
defined as follows:

000001-065535 Read/Write Coils
100001-165535 Read Input Status
300001-365535 Read Input Registers
400001-465535 Read/Write Holding Registers

Default: FALSE

Version Data Type: STRING

This parameter is intended to specify the minimum APACS or QUADLOG version compatibility
level for using this function block. Its use is flexible. For example, you can use it to enter the control
module firmware revision number, 4-mation’s software version number, or both. Once entered, you
can determine compatibility by checking a software number against the number(s) in this parameter.

BOOL BOOL

SERIAL

 NDR
ERROR

E_CODE

EN

ID
INT
BOOL

INT

FUNCTION BLOCKS CG39FDI-2

May 19974-14

4.2 SERIAL FUNCTION BLOCK (SERIAL)

The symbol for the Serial (SERIAL) function block is shown above. This block is used to initialize the
Modbus communications port. Specifically, it enables a control module’s serial port to communicate with the
Modbus network and its foreign devices. This section defines the block’s input, outputs, and soft list
parameters.

4.2.1 Input

This subsection provides specifications and important supplementary information for the SERIAL function
block input.

EN Data Type: BOOL

When this input is set to FALSE, the SERIAL block is not active. When TRUE, the function block
generates an ID output, which is used by the other serial communication function blocks. When
active, the function block handle requests from the communication function blocks and external
devices connected to the serial port.

4.2.2 Outputs

This subsection provides specifications and important supplementary information for the SERIAL function
block outputs.

NDR Data Type: BOOL

Reserved for future use.

ERROR Data Type: BOOL

This output is TRUE when the last transmitted or received message contains an error. More
information about the error is provided by the E_CODE output.

CG39FDI-2 FUNCTION BLOCKS

May 1997 4-15

E_CODE Data Type: INT

A 0 (zero) output indicates that no general serial port errors exist. Error conditions particular to a
serial port command are passed to the appropriate communication function block (e.g.
MODBUS_M), which has its own E_CODE output.

ID Data Type: INT

If the SERIAL block is functioning, it provides an ID output which must be used by other serial
communication function blocks as the ID input. An output of 0 indicates the SERIAL block is not
functioning.

4.2.3 Soft List Parameters

This subsection provides specifications and important supplementary information for the SERIAL function
block soft list parameters.

BaudRate Data Type: UDINT

This parameter sets the communication baud rate between the control module and the foreign serial
device. The baud rates must be the same for all the serial communication devices.

Valid Entries: 110, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 125000,
143000, 170000, 200000, 250000

Default: 9600

DataBits Data Type: UINT

The number of data bits used to represent a character must be specified. For Modbus, the data bits
should be set to 8.

Valid Entries: 7, 8

Default: 8

FUNCTION BLOCKS CG39FDI-2

May 19974-16

Parity Data Type: UINT

The parity mode must be the same for all serial communication devices. Traditional Modbus devices
use even parity but be sure to check the foreign device’s documentation.

Valid Entries: 0=None, 1=Odd, 2=Even

Default: 0=None

StopBits Data Type: UINT

The number of stop bits used for a serial transmission must be specified.

Valid Entries: 1, 2

Default: 1

FlowControl Data Type: UINT

Flow control specifies what type of hardware handshaking is used between the serial communication
devices. If the options below do not satisfy your application, you may have to hardwire the necessary
handshaking lines. Refer to Appendix E for typical serial cable pin-outs.

Valid Entries: 0=RTS (Pin 8) held asserted
1=RTS asserted when control module transmits
2=Full RTS/CTS operation
3=RTS held asserted with CTS observed before transmitting

Default: 0

IMPORTANT

When using a FlowControl setting other than 0, the control module serial port Data
Carrier Detect (DCD) input, pin 4, must be connected to a logic TRUE pin from the
Modbus device serial port, such as a DCD output or a Data Terminal Ready (DTR)
signal. If the Modbus device does not have this signal, pin 4 of the control module
serial port can be tied back to pin 8, the Request to Send (RTS) output.

CG39FDI-2 FUNCTION BLOCKS

May 1997 4-17

Timeout Data Type: UINT

When a control module initiates a serial transmission, it waits for the specified period of time for a
response from the foreign device before indicating a timeout.

Valid Entries: 0 to 65535 (time base is milliseconds)

Default: 3000 (3.0 seconds)

ReceiveBufSize Data Type: UINT

Reserved for future use.

TransmitBufSize Data Type: UINT

Reserved for future use.

SIM_RackNum Data Type: UINT

Reserved for future use.

SIM_SlotNum Data Type: UINT

Reserved for future use.

PortNum Data Type: UINT

This parameter should be set to the control modules’s serial port number connected to the Modbus
device.

Valid Entries: 1 to 8

Default: 2

FUNCTION BLOCKS CG39FDI-2

May 19974-18

Version Data Type: STRING

This parameter is intended to specify the minimum APACS or QUADLOG version compatibility
level for using this function block. Its use is flexible. For example, you can use it to enter the control
module firmware revision number, 4-mation’s software version number, or both. Once entered, you
can determine compatibility by checking a software number against the number(s) in this parameter.

#

CG39FDI-2 APPENDIX A — APPLICATION EXAMPLE 1

May 1997 A-1

A.0 APPENDIX A — APPLICATION EXAMPLE 1 *

In this application example, the Modbus master (ACM or CCM) reads 30 floating point (FP) values from
slave address 5, starting at register 40101. The slave device handles FP values similar to a Modicon PLC;
therefore, each value requires two consecutive registers for reading (and writing). See Figures A-1 through
A-4 for configuration examples.

A Serial block, SERIAL1, is configured with the EN input variable SER1_EN. When this is TRUE, the
function block sets up and handles serial communications with the control module’s serial port 2. If
successful, the ID output has a non-zero value, which can be used as the ID input to a communication
function block. Be sure to configure the BaudRate, Parity, and StopBits parameters correctly. In this
example, the BaudRate is 19200, Parity = 0 (none), and StopBits = 1.

For the MODBUS_M block in Figure A-3, the READ1 variable is set with an initial value of TRUE and
configured as the CONT input since the application requires continuous update of these dynamic floating
point (FP) values. By using a variable as the CONT input rather than a constant TRUE, the application can
easily stop this function by writing a FALSE to READ1. The ID1 input comes from the SERIAL block
configured for control module serial port 2. The ADDR input is set to 5 by the ADDR5 integer variable. The
Modbus register read function code 3 is requested by entering the CMD3 variable as the CMD input. The
double integer variable R40101 has a value of 40101 for the START input, and the NUM_60 input is set to
60. Note that the number of registers (60) is twice the number of values (30) needed since two registers
compose one floating point value.

The values received from the read command are placed in the DATA1 array. This array is defined as a one-
dimensional array of REALs with dimensions 101 to 130. Therefore, each FP value can be found in its
corresponding array element location. For example, the tenth FP value (slave registers 40119 and 40120) are
placed in the APACS/QUADLOG variable DATA1[110], which can be read like any other variable in the
control module.

Note how the soft list is configured for this command. NumBytesPerReg is set to 2 since each 2-byte register
address represents half the floating point value (4-byte total). ModiconByteOrder is selected as TRUE since
the slave device returns a FP value with the same byte order as a Modicon PLC floating point value. No
scaling is needed for this configuration since FP values are handled by both master and slave devices.

SERIAL1
SERIAL

REQ - FALSE

- FALSE

- 0

 2
- ID1

TRUE
SER1_EN- NDR

 ERROR

E_CODE

 ID

APPENDIX A — APPLICATION EXAMPLE 1 CG39FDI-2

May 1997A-2

FIGURE A-1 SERIAL Block Configuration Showing On-line Data for Example 1

FIGURE A-2 SERIAL Block Soft List for Example 1

EXAMPLE1
MODBUS_M

REQ

CONT

ID

ADDR

CMD

START

NUM

DATA

ENG_LO

ENG_HI

FD_LO

FD_HI

-

-

-

-

-
TRUE

READ1-
2

ID1 -
2

ADDR5-
3

CMD3 -
40101

R40101-
60

NUM_60-

DATA1-

-

-

-

-

 NDR

 ERROR

E_CODE

 STATE

CG39FDI-2 APPENDIX A — APPLICATION EXAMPLE 1

May 1997 A-3

FIGURE A-3 MODBUS_M Configuration Showing On-line Data for Example 1

FIGURE A-4 MODBUS_M Soft List for Example 1

#

APPENDIX A — APPLICATION EXAMPLE 1 CG39FDI-2

May 1997A-4

CG39FDI-2 APPENDIX B — APPLICATION EXAMPLE 2

May 1997 B-1

B.0 APPENDIX B — APPLICATION EXAMPLE 2 *

In this application example, the control module is reading 100 unsigned integer values from slave address 5,
starting at register 40001, and converting those to REAL values for use in the control module. Similar to
standard register values in a Modicon PLC, each register represents one value with a possible range from 0 to
65535 (16-bit). Internally, the slave device may scale these values to an engineering range, such as 0 to
200°F (0 = 0°F and 4095 = 200°F). See Figure B-1 for the associated MODBUS_M block configuration.

The READ2 variable is set with an initial value of TRUE and configured as the CONT input since the
application requires continuous update of these dynamic unsigned integer values. By using a variable as the
CONT input rather than a constant TRUE, the application can easily stop this function by writing a FALSE
to READ2.

The ID1 input comes from the SERIAL block configured for control module serial port 2. The ADDR input
is set to 5 by the ADDR5 integer variable. The Modbus register read function code 3 is requested by entering
the CMD3 variable as the CMD input. The R40001 variable with a DINT value of 40001 is configured as
the START input, and the NUM_100 input is set to 100.

The values received from the read command are placed in the DATA2 array. This array is defined as a
one-dimensional array of REALs with dimensions 1 to 100. Since most analog values in an APACS or
QUADLOG system are REALs, this block is configured to scale each unsigned integer value from the slave
into a REAL value. The scaling information is provided by the FD_LO and FD_HI values and the ENG_LO
and ENG_HI values. Since the block is performing a read function, the scaling values are used as follows:
the FD_LO and FD_HI are used as the “from” values, the ENG_LO and ENG_HI are used as the “to”
values. Note that the “from” values are the same for all registers read by this block, but each REAL value
has its own set of ENG_LO and ENG_HI factors. For example, if FD_LO=0, FD_HI=65535,
ENG_LO=0.00, and ENG_HI=100.00, a register value of 32768 is scaled to produce a REAL value of
50.00.

An ability is provided to scale each value differently as it is stored in the DATA2 array, since an ENG_LO
and ENG_HI pair exists for each array element. The ENG_LO and ENG_HI are also arrays. However, the
raw data values coming from the slave device are all subject to the same scaling factors since only one set of
FD_LO and FD_HI values exist. In this example, FD_LO and FD_HI are declared as REAL variables and
the ENG_LO and ENG_HI are arrays of REALs.

The soft list parameters are not used by the block in this case since the FD_LO and FD_HI entries are
configured, which indicates that 16-bit values are being read from the slave device.

EXAMPLE2
MODBUS_M

REQ

CONT

ID

ADDR

CMD

START

NUM

DATA

ENG_LO

ENG_HI

FD_LO

FD_HI

-

-

-

-

-
TRUE
READ2-
2
ID1 -
5
ADDR5-
3
CMD3 -
40001
R40101-
100

NUM_100-

DATA2-

ENG_LO2-

ENG_HI2-
0.0

FD_LO2-
65535.0
FD_HI2-

 NDR

 ERROR

E_CODE

 STATE

APPENDIX B — APPLICATION EXAMPLE 2 CG39FDI-2

May 1997B-2

FIGURE B-1 MODBUS_M Configuration Showing On-line Data for Example 2

#

CG39FDI-2 APPENDIX CS ERROR CODES

May 1997 C-1

C.0 APPENDIX C — ERROR CODES *

The error code (E_CODE) output from the Modbus Master (MODBUS_M) function block provides a
STRING that lists one or more of the following error code messages listed in Table C-1.

The E_CODE output clears with each execution of the block. To view the string in 4-mation’s on-line mode,
use its Variable Control function to set the block’s Request (REQ) and Continuous (CONT) inputs to
FALSE. Then, toggle the REQ input TRUE (do not pulse the input). The block executes once and the error
string can be read until the REQ input is changed.

TABLE C-1 Error Codes

ERROR CODE DESCRIPTION OR RECOMMENDED
(E_CODE) POSSIBLE CAUSE ACTION

03 Backup_Confirmation_Failed C A message was received Check all cables, signal
by only one side of a converters (RS-422/RS-232),
redundant pair. or modems used.

C A message was discarded.

C There is a cable or signal
converter problem.

04 Checksum_Problem C A partial message was Check source of message for
received. proper setup. Check hardware

C There was a CRC error in
the message.

C An unknown message was
received.

connections.

06 Message_Problem C This is a loopback message Check all cables, signal
failure. converters (RS-422/RS-232),

C There is a possible
communication hardware
problem.

or modems used.

APPENDIX C S ERROR CODES CG39FDI-2

May 1997C-2

TABLE C-1 Error Codes (Continued)

ERROR CODE DESCRIPTION OR RECOMMENDED
(E_CODE) POSSIBLE CAUSE ACTION

07 Transmit_Busy The serial port is busy servicing No action required if multiple
another function block. function blocks are configured

for one serial port.

08 Old_Message_Removed C A message was discarded C Check the source of
from the serial port that was message for proper setup.
not serviced within three
controller scans. C Use a protocol analyzer to

C Possibly, a MODBUS block additional information.
was not configured to handle
this message. C Verify the MODBUS

decipher the message for

block configuration.

09 General_Uart_Problem C There is a problem with the C Check for multiple
ACM/CCM’s serial port. SERIAL blocks using one

C There is a conflicting
configuration using the same C Check for conflicting
serial port. function blocks using the

C An attempt was made to use
a serial port other than 1 or
2.

serial port.

same serial port.

10 Re_Initializing_Port A MODBUS function block is If this code persists, check for
reinitializing because of a changing inputs or soft list
configuration change. parameters on MODBUS

function blocks.

11 No_ID_Present The ID input of a MODBUS Configure the ID input of the
function block is not configured MODBUS block as the output
or zero. This would be a normal of the SERIAL block and
code if you choose to disable a enable the SERIAL block.
set of function blocks so they do
not use a particular serial port.

CG39FDI-2 APPENDIX CS ERROR CODES

TABLE C-1 Error Codes (Continued)

ERROR CODE DESCRIPTION OR RECOMMENDED
(E_CODE) POSSIBLE CAUSE ACTION

May 1997 C-3

12 Invalid_Range_Inputs C The ENG_LO or ENG_HI Check for proper
inputs are not configured configuration of the ENG_LO
properly. These inputs and ENG_HI inputs. See
should only be configured section 4.1.1, Inputs.
with a REAL array and two
bytes per register.

C The span is equal to zero.

C The string size is greater
than 255 characters.

C The ENG_HI input was
configured using signed
integer conversion.

13 Default_Message_Problem An unknown Modbus command Check the sending device.
was received.

14 Array_Problem On the MODBUS block, either Check the configuration of the
the DATA, ENG_LO, or MODBUS block’s ENG_LO,
ENG_HI input array is not ENG_HI, and DATA inputs.
configured properly. Arrays See section 4.1.1, Inputs.
must be one dimensional. If the
input array is a string array, the
ENG_LO input requires an INT
array. The ENG_LO and
ENG_HI arrays must have the
same number of elements as the
DATA array.

15 Array_DataType_Problem The DATA input array variable Verify the MODBUS block’s
type is invalid. DATA input with respect to

its CMD, START, and NUM
inputs. See section 4.1.1,
Inputs.

18 Max_Size_Exceeded The NUM input exceeds the Verify the MODBUS blocks’s
maximum allowed for the NUM input based on the
DATA and CMD inputs. DATA input variable type and

CMD input. See section 4.1.1,
Inputs.

APPENDIX C S ERROR CODES CG39FDI-2

TABLE C-1 Error Codes (Continued)

ERROR CODE DESCRIPTION OR RECOMMENDED
(E_CODE) POSSIBLE CAUSE ACTION

May 1997C-4

21 Invalid_Inputs The function code specified on Verify the MODBUS block’s
the MODBUS block’s CMD CMD and START inputs. See
input is not compatible with the section 4.1.1, Inputs.
START input’s address range.

22 Invalid_Command The MODBUS block’s CMD Verify the CMD input is
input is invalid. supported by the MODBUS

function block.

23 Timeout_Error The Modbus device did not Use a protocol analyzer to
respond within the configured verify communications
time-out period. between the

APACS/QUADLOG system
and the Modbus device.

24 Unknown_Exception_Received The MODBUS_M block has C Check the source of
received an exception response message for proper setup.
with an unsupported exception
code. C Use a protocol analyzer to

decipher the message for
additional information.

25 Invalid_Address The MODBUS block’s START Verify the START, NUM and
input address may be invalid. DATA inputs for valid
The START and NUM input address ranges.
values may not match the
DATA, ENG_LO or ENG_HI
array sizes.

28 CTS_Lost_During_Transmission When using FlowControl Monitor serial
options 2 or 3, the CTS line communications parameters
went low before transmission and check modem if problem
was completed. persists.

29 Unknown_TX_Error This is an unknown serial port Check for misconfiguration of
driver transmission problem. serial port, bad wiring or

incompatible communication
parameters (e.g. baud rate,
parity, etc).

CG39FDI-2 APPENDIX CS ERROR CODES

TABLE C-1 Error Codes (Continued)

ERROR CODE DESCRIPTION OR RECOMMENDED
(E_CODE) POSSIBLE CAUSE ACTION

May 1997 C-5

30 Unknown_RX_Error This is an unknown serial port Check for misconfiguration of
driver reception problem. serial port, bad wiring or

incompatible communication
parameters (e.g. baud rate,
parity).

31 Illegal_Function_Exception The Modbus slave device does Verify that the function code
not understand the function used is supported by the
code. Modbus slave device.

32 Illegal_Data_address_Exception The starting or ending Modbus Verify that the value used is
address, data register, or coils is within the defined range.
out of range.

33 Illegal_Data_value_Exception C An illegal data value was C Correct the data value.
written.

C A coil or register write failed block’s security settings.
for security reasons.

C Check the MODBUS_S

34 Connection_Lost The MODBUS_M block has C Check all cables, signal
lost contact with its Modbus converters (RS-422/RS-
slave device. 232), or modems used to

connect to the slave
device.

C Check the Modbus slave
device for proper
operation.

#

APPENDIX C S ERROR CODES CG39FDI-2

May 1997C-6

CG39FDI-2 APPENDIX DS MODBUS LIBRARY SPECIFICATIONS

May 1997 D-1

D.0 APPENDIX D — SPECIFICATIONS *

General specifications for the Modbus Function Block Library are listed in Table D-1. Where applicable,
default values are shown in bold type.

TABLE D-1 Library Specifications

ITEM SPECIFICATION

Library Software Part Numbers APACS 15939-623V4.00 Modbus Master
QUADLOG 15939-681V3.20 Modbus Master

Note that the Vx.xx suffix refers to the software version number. It
will differ for later versions.

Required 4-mation Version 3.00 or later

Electrical I/O Port RS232 (Other physical layers can be accommodated with external
converters, such as RS422 for multi-drop applications.) For
RS422/RS485, use 4-wire only.

Transmission Mode Modbus RTU (binary)

Baud Rate 110, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600,
115200, 125000, 143000, 170000, 200000, 250000

Start Bits 1

Data Bits 7 or 8

Parity Odd, Even, Space, Mark, or None

Stop Bits 1 or 2

Error Checking CRC-16

Slave Address 1 to 247

Supported Function Codes 01 - Read Coil Status 02 - Read Input Status
03 - Read Holding Registers 04 - Read Input Registers
05 - Force Single Coil 06 - Preset Single Register
08 - Loopback Test 15 - Force Multiple Coils
16 - Preset Multiple Registers 17 - Report Slave I.D.
65 - Coil Status Read/Write * 66 - Holding Register Read/Write*

* MODBUS_M only

APPENDIX DS MODBUS LIBRARY SPECIFICATIONS CG39FDI-2

May 1997D-2

TABLE D-1 Library Specifications (Continued)

ITEM SPECIFICATION

Supported Address Types 00001-09999 Read/Write Coils
10001-19999 Read Input Status
30001-39999 Read Input Registers
40001-49999 Read/Write Holding Registers

Extended Addressing:
000001-065535 Read/Write Coils
100001-165535 Read Input Status
300001-365535 Read Input Registers
400001-465535 Read/Write Holding Registers

Device Data Types Boolean
Word
Signed Integer
Unsigned Integer
Double Signed Integer
Double Unsigned Integer
Floating Point (2-register and 1-register formats; two different byte
orders)
String

#

ACM /CCM Serial Port (1 or 2)

Received Data RD
Transmitted Data TD
Signal Ground SG
Clear to Send CTS
Request to Send RTS
Data Set Ready DSR
Data Terminal Ready DTR
Data Carrier Detect DCD

TD Pin 2
 Pin 3

DCD Pin 4
Signal Common Pin 5

CTS Pin 7
RTS Pin 8

Foreign Device Serial Port

RD

CG39FDI-2 APPENDIX E S CABLE CONNECTIONS

May 1997 E-1

E.0 APPENDIX E — CABLE CONNECTIONS

The pin-out for a control module serial port (DB9 female) is shown in the Table E-1. As a minimum, the
cable between the control module serial port and the foreign device will require TD, RD and SG as shown in
Figure E-1. The foreign device may require additional handshaking signals for proper operation (consult the
foreign device documentation.) The FlowControl soft list parameter of the SERIAL block may also be useful
in selecting the proper handshaking mode or these signals may have to be tied back to the foreign device
(RTS to CTS, and DTR to DSR and DCD) as shown in Figure E-1.

TABLE E-1 Control Module Serial Port Pin-Out

PIN # DESCRIPTION DIRECTION

1 No Connection

2 Transmitted Data (TD) Output

3 Received Data (RD) Input

4 Data Carrier Detect (DCD) Input

5 Signal Ground (SG) N/A

6 No Connection

7 Clear to Send (CTS) Input

8 Request to Send (RTS) Output

9 Ring Indicator (RI) Input

FIGURE E-1 Minimum Serial Cable Requirements

APPENDIX E S CABLE CONNECTIONS CG39FDI-2

May 1997E-2

 NOTES

The control module's serial port pin-out is not the same as that typically found on a personal
computer. The control module’s serial port is a DB9 female connection, using different pins
than a PC for transmitting (TD) and receiving (RD) data.

When using a FlowControl setting other than 0, the control module’s serial port Data Carrier
Detect (DCD) input, pin 4, must be connected to a logic TRUE pin from the Modbus device
serial port such as a Data Carrier Detect (DCD) output or a Data Terminal Ready (DTR)
signal. If the Modbus device does not have this signal, pin 4 of the control module can be
tied back to pin 8, the Request to Send (RTS) output.

#

RS-232 to RS-485
Converter
DIN rail mount
500v Isolation

V+

V-

0V

P+

5V

P-

L

G

J

M

K

B

E

C

A

D

Tx+Rxd

Tx-Txd

Rx+CTRL

Rx-0V

Signal
Common

(0V)

APACS/QUADLOG
supports

4-wire interface only

Entrelec
P/N 84233-11

Moore Products Co.
P/N 16055-395

COM

+24VDC
 < 100ma

DS9

Txd

Rxd

RTS

Signal
Common

ACM/

SERIAL
PORT

2

3

8

5

Notes: 1, 2, 3, 4, 5, 6

NOTES:
1. Internal Jumper Rt set to 220 Ohms
2. Internal Jumper R set to ON
3. Internal Jumper E set to ON/OFF
4. All RS-485 Slave devices must be
 wired in parallel.
5. Arrows on lines denote signal
 direction.
6. When RTS is not available,
 (i.e. Foreign Device side)
 Jumper M to L on converter.
7. Shield must be connected to
 the metal connector shell.
8. J to F connection has been provided
 inside the Entrelec converter.

Note: 7
Note: 4

FOREIGN
RS-485
DEVICE

Rx+

Rx-

Tx+

Signal
Common

Tx-

FNote: 8

CCM

CG39FDI-2 APPENDIX F—ENTRELEC RS232/485 CONVERTER CONNECTIONS

May 1997 F-1

F.0 APPENDIX F — ENTRELEC RS232/485 CONVERTER CONNECTIONS *

Cable connections needed to interface an RS-485 foreign device to the ACM/CCM RS-232 serial port by
means of the Entrelec RS232/485 Converter are shown in Figure F-1. This converter is recommended by and
available from Moore Products Co.

FIGURE F-1 Entrelec RS-232/RS-485 Converter Cable Connections

APPENDIX F—ENTRELEC RS232/485 CONVERTER CONNECTIONS CG39FDI-2

May 1997F-2

RS232:485
Converter

RS232:485
Converter

Foreign Device
Interface 1

Foreign Device
Interface 2

ACM/CCM: A
Serial
Port 1

Serial
Port 2

ACM/CCM: B
Serial
Port 1

Serial
Port 2

Redundant System

RS-485 4-wire
RS-485 4-wire

RS-232 RS-232 RS-232RS-232

RS232:485
Converter

RS232:485
Converter

CG39FDI-2 APPENDIX G—REDUNDANT SYSTEM WIRING CONFIGURATION

May 1997 G-1

G.0 APPENDIX G — REDUNDANT SYSTEM WIRING CONFIGURATION *

Figure G-1 shows the general wiring needed for a dual Modbus network in a redundant system. For typical
RS-232 and RS-485 cable connections, refer to Appendix F.

FIGURE G-1 Redundant System Wiring Configuration

#

	1.0 INTRODUCTION
	1.1 PRODUCT DESCRIPTION
	1.2 SOFTWARE REGISTRATION AND SUPPORT
	1.2.1 Software Registration
	1.2.2 Product Support

	1.3 RELATED LITERATURE

	2.0 SOFTWARE INSTALLATION
	2.1 DISK IDENTIFICATION AND BACKUP
	2.2 INSTALLATION PROCEDURE

	3.0 CONFIGURATION
	3.1 PROCEDURE
	3.2 ACCESSING THE FUNCTION BLOCK LIBRARY
	3.3 GENERAL CONCEPTS
	3.4 CONFIGURATION GUIDELINES

	4.0 FUNCTION BLOCKS
	4.1 MODBUS MASTER FUNCTION BLOCK (MODBUS_M)
	4.1.1 Inputs
	4.1.2 Outputs
	4.1.3 Soft list Parameters

	4.2 SERIAL FUNCTION BLOCK (SERIAL)
	4.2.1 Input
	4.2.2 Outputs
	4.2.3 Soft List Parameters

	A.0 APPENDIX A — APPLICATION EXAMPLE 1
	B.0 APPENDIX B — APPLICATION EXAMPLE 2
	C.0 APPENDIX C — ERROR CODES
	D.0 APPENDIX D — SPECIFICATIONS
	E.0 APPENDIX E — CABLE CONNECTIONS
	F.0 APPENDIX F — ENTRELEC RS232/485 CONVERTER CONNECTIONS
	G.0 APPENDIX G — REDUNDANT SYSTEM WIRING CONFIGURATION

